Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37420984

ABSTRACT

This paper describes, in detail, a method that uses flow cytometry to quantitatively characterise the performance of continuous-flow microfluidic devices designed to separate particles. Whilst simple, this approach overcomes many of the issues with the current commonly utilised methods (high-speed fluorescent imaging, or cell counting via either a hemocytometer or a cell counter), as it can accurately assess device performance even in complex, high concentration mixtures in a way that was previously not possible. Uniquely, this approach takes advantage of pulse processing in flow cytometry to allow quantitation of cell separation efficiencies and resulting sample purities on both single cells as well as cell clusters (such as circulating tumour cell (CTC) clusters). Furthermore, it can readily be combined with cell surface phenotyping to measure separation efficiencies and purities in complex cell mixtures. This method will facilitate the rapid development of a raft of continuous flow microfluidic devices, will be helpful in testing novel separation devices for biologically relevant clusters of cells such as CTC clusters, and will provide a quantitative assessment of device performance in complex samples, which was previously impossible.

2.
Lab Chip ; 23(1): 146-156, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36484411

ABSTRACT

Microbial populations play a crucial role in human health and the development of many diseases. These diseases often arise from the explosive proliferation of opportunistic bacteria, such as those in the nasal cavity. Recently, there have been increases in the prevalence of these opportunistic pathogens displaying antibiotic resistance. Thus, the study of the nasal microbiota and its bacterial diversity is critical in understanding pathogenesis and developing microbial-based therapies for well-known and emerging diseases. However, the isolation and analysis of these populations for clinical study complicates the already challenging task of identifying and profiling potentially harmful bacteria. Existing methods are limited by low sample throughput, expensive labeling, and low recovery of bacteria with ineffective removal of cells and debris. In this study, we propose a novel microfluidic channel with a zigzag configuration for enhanced isolation and detection of bacteria from human clinical nasal swabs. This microfluidic zigzag channel separates the bacteria from epithelial cells and debris by size differential focusing. As such, pure bacterial cell fractions devoid of large contaminating debris or epithelial cells are obtained. DNA sequencing performed on the separated bacteria defines the diversity and species present. This novel method of bacterial separation is simple, robust, rapid, and cost-effective and has the potential to be used for the rapid identification of bacterial cell populations from clinical samples.


Subject(s)
Bacteria , Microfluidics , Humans , Microfluidics/methods , Sequence Analysis, DNA , Cell Separation/methods
3.
Micromachines (Basel) ; 13(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144139

ABSTRACT

Cryopreservation is the final step of stem cell production before the cryostorage of the product. Conventional methods of adding cryoprotecting agents (CPA) into the cells can be manual or automated with robotic arms. However, challenging issues with these methods at industrial-scale production are the insufficient mixing of cells and CPA, leading to damage of cells, discontinuous feeding, the batch-to-batch difference in products, and, occasionally, cross-contamination. Therefore, the current study proposes an alternative way to overcome the abovementioned challenges; a highly efficient micromixer for low-cost, continuous, labour-free, and automated mixing of stem cells with CPA solutions. Our results show that our micromixer provides a more homogenous mixing of cells and CPA compared to the manual mixing method, while the cell properties, including surface markers, differentiation potential, proliferation, morphology, and therapeutic potential, are well preserved.

4.
Lab Chip ; 22(21): 4093-4109, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36102894

ABSTRACT

Separation and enrichment of target cells prior to downstream analyses is an essential pre-treatment step in many biomedical and clinical assays. Separation techniques utilizing simple, cost-effective, and user-friendly devices are highly desirable, both in the lab and at the point of need. Passive microfluidic approaches, especially inertial microfluidics, fit this brief perfectly and are highly desired. Using an optimized additive manufacturing technique, we developed a zigzag microchannel for rigid inertial separation and enrichment, hereafter referred to as Z-RISE. We empirically showed that the Z-RISE device outperforms equivalent devices based on curvilinear (sinusoidal), asymmetric curvilinear, zigzag with round corners, or square-wave formats and modelled this behavior to gain a better understanding of the physics underpinning the improved focusing and separation performance. The comparison between rigid and soft zigzag microchannels reveals that channel rigidity significantly affects and enhances the focusing performance of the microchannel. Compared to other serpentine microchannels, zigzag microfluidics demonstrates superior separation and purity efficiency due to the sudden channel cross-section expansion at the corners. Within Z-RISE, particles are aligned in either double-side or single-line focusing positions. The transition of particles from a double-focusing line to a single focusing line introduced a new phenomenon referred to as the plus focusing position. We experimentally demonstrated that Z-RISE could enrich leukocytes and their subtypes from diluted and RBC lysed blood while depleting dead cells, debris, and RBCs. Z-RISE was also shown to yield outstanding particle or cell concentration with a concentration efficiency of more than 99.99%. Our data support the great potential of Z-RISE for applications that involve particle and cell manipulations and pave the way for commercialization perspective in the near future.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Leukocytes , Erythrocytes , Erythrocyte Count , Cell Separation
5.
Cancers (Basel) ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35884424

ABSTRACT

Prostate cancer (PCa) diagnosis is primarily based on prostate-specific antigen (PSA) testing and prostate tissue biopsies. However, PSA testing has relatively low specificity, while tissue biopsies are highly invasive and have relatively low sensitivity at early stages of PCa. As an alternative, we developed a technique of liquid biopsy, based on isolation of circulating tumor cells (CTCs) from seminal fluid (SF). The recovery of PCa cells from SF was demonstrated using PCa cell lines, achieving an efficiency and throughput as high as 89% (±3.8%) and 1.7 mL min-1, respectively, while 99% (±0.7%) of sperm cells were disposed of. The introduced approach was further tested in a clinical setting by collecting and processing SF samples of PCa patients. The yield of isolated CTCs measured as high as 613 cells per SF sample in comparison with that of 6 cells from SF of healthy donors, holding significant promise for PCa diagnosis. The correlation analysis of the isolated CTC numbers with the standard prognostic parameters such as Gleason score and PSA serum level showed correlation coefficient values at 0.40 and 0.73, respectively. Taken together, our results show promise in the developed liquid biopsy technique to augment the existing diagnosis and prognosis of PCa.

6.
Lab Chip ; 22(3): 445-462, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35076046

ABSTRACT

Cell cycle synchronisation is the process of isolating cell populations at specific phases of the cell cycle from heterogeneous, asynchronous cell cultures. The process has important implications in targeted gene-editing and drug efficacy of cells and in studying cell cycle events and regulatory mechanisms involved in the cell cycle progression of multiple cell species. Ideally, cell cycle synchrony techniques should be applicable for all cell types, maintain synchrony across multiple cell cycle events, maintain cell viability and be robust against metabolic and physiological perturbations. In this review, we categorize cell cycle synchronisation approaches and discuss their operational principles and performance efficiencies. We highlight the advances and technological development trends from conventional methods to the more recent microfluidics-based systems. Furthermore, we discuss the opportunities and challenges for implementing high throughput cell synchronisation and provide future perspectives on synchronisation platforms, specifically hybrid cell synchrony modalities, to allow the highest level of phase-specific synchrony possible with minimal alterations in diverse types of cell cultures.


Subject(s)
Cell Culture Techniques , Microfluidics , Cell Cycle/physiology , Cell Survival , Microfluidics/methods
7.
Bioresour Bioprocess ; 9(1): 64, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-38647880

ABSTRACT

Microfluidic devices have shown promising applications in the bioprocessing industry. However, the lack of modularity and high cost of testing and error limit their implementation in the industry. Advances in 3D printing technologies have facilitated the conversion of microfluidic devices from research output to applicable industrial systems. Here, for the first time, we presented a 3D printed modular microfluidic system consisting of two micromixers, one spiral microfluidic separator, and one microfluidic concentrator. We showed that this system can detach and separate mesenchymal stem cells (MSCs) from microcarriers (MCs) in a short time while maintaining the cell's viability and functionality. The system can be multiplexed and scaled up to process large volumes of the industry. Importantly, this system is a closed system with no human intervention and is promising for current good manufacturing practices.

8.
Micromachines (Basel) ; 12(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34945321

ABSTRACT

Mixing at the microscale is of great importance for various applications ranging from biological and chemical synthesis to drug delivery. Among the numerous types of micromixers that have been developed, planar passive spiral micromixers have gained considerable interest due to their ease of fabrication and integration into complex miniaturized systems. However, less attention has been paid to non-planar spiral micromixers with various cross-sections and the effects of these cross-sections on the total performance of the micromixer. Here, mixing performance in a spiral micromixer with different channel cross-sections is evaluated experimentally and numerically in the Re range of 0.001 to 50. The accuracy of the 3D-finite element model was first verified at different flow rates by tracking the mixing index across the loops, which were directly proportional to the spiral radius and were hence also proportional to the Dean flow. It is shown that higher flow rates induce stronger vortices compared to lower flow rates; thus, fewer loops are required for efficient mixing. The numerical study revealed that a large-angle outward trapezoidal cross-section provides the highest mixing performance, reaching efficiencies of up to 95%. Moreover, the velocity/vorticity along the channel length was analyzed and discussed to evaluate channel mixing performance. A relatively low pressure drop (<130 kPa) makes these passive spiral micromixers ideal candidates for various lab-on-chip applications.

9.
J Tissue Eng ; 12: 20417314211060590, 2021.
Article in English | MEDLINE | ID: mdl-34868541

ABSTRACT

In modern life, several factors such as genetics, exposure to toxins, and aging have resulted in significant levels of male infertility, estimated to be approximately 18% worldwide. In response, substantial progress has been made to improve in vitro fertilization treatments (e.g. microsurgical testicular sperm extraction (m-TESE), intra-cytoplasmic sperm injection (ICSI), and round spermatid injection (ROSI)). Mimicking the structure of testicular natural extracellular matrices (ECM) outside of the body is one clear route toward complete in vitro spermatogenesis and male fertility preservation. Here, a new wave of technological innovations is underway applying regenerative medicine strategies to cell-tissue culture on natural or synthetic scaffolds supplemented with bioactive factors. The emergence of advanced bioengineered systems suggests new hope for male fertility preservation through development of functional male germ cells. To date, few studies aimed at in vitro spermatogenesis have resulted in relevant numbers of mature gametes. However, a substantial body of knowledge on conditions that are required to maintain and mature male germ cells in vitro is now in place. This review focuses on advanced bioengineering methods such as microfluidic systems, bio-fabricated scaffolds, and 3D organ culture applied to the germline for fertility preservation through in vitro spermatogenesis.

10.
Int J Mol Sci ; 22(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34769444

ABSTRACT

Exosomes belong to the class of extracellular vesicles of endocytic origin, which are regarded as a promising source of cancer biomarkers in liquid biopsy. As a result, an accurate, sensitive, and specific quantification of these nano-sized particles is of significant importance. Affinity-based approaches are recognized as the most valuable technique for exosome isolation and characterization. Indeed, Affibody biomolecules are a type of protein scaffold engineered with small size and enjoy the features of high thermal stability, affinity, and specificity. While the utilization of antibodies, aptamers, and other biologically active substances for exosome detection has been reported widely, there are no reports describing Affibody molecules' usage for exosome detection. In this study, for the first time, we have proposed a novel strategy of using Affibody functionalized microbeads (AffiBeads) for exosome detection with a high degree of efficiency. As a proof-of-concept, anti-EGFR-AffiBeads were fabricated and applied to capture and detect human lung A549 cancer cell-derived EGFR-positive exosomes using flow cytometry and fluorescent microscopy. Moreover, the capture efficiency of the AffiBeads were compared with its counterpart antibody. Our results showed that the Affibody probe had a detection limit of 15.6 ng exosomes per mL (~12 exosomes per AffiBead). The approach proposed in the current study can be used for sensitive detection of low expression level markers on tumor-derived exosomes, providing a basis for early-stage cancer diagnosis.


Subject(s)
Early Detection of Cancer/methods , Exosomes/pathology , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Antibodies, Monoclonal/chemistry , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , Exosomes/metabolism , Humans , Liquid Biopsy/methods , Neoplasms/metabolism
11.
Biosensors (Basel) ; 11(10)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34677325

ABSTRACT

The COVID-19 pandemic has changed people's lives and has brought society to a sudden standstill, with lockdowns and social distancing as the preferred preventative measures. To lift these measurements and reduce society's burden, developing an easy-to-use, rapid, and portable system to detect SARS-CoV-2 is mandatory. To this end, we developed a portable and semi-automated device for SARS-CoV-2 detection based on reverse transcription loop-mediated isothermal amplification followed by a CRISPR/Cas12a reaction. The device contains a heater element mounted on a printed circuit board, a cooler fan, a proportional integral derivative controller to control the temperature, and designated areas for 0.2 mL Eppendorf® PCR tubes. Our system has a limit of detection of 35 copies of the virus per microliter, which is significant and has the capability of being used in crisis centers, mobile laboratories, remote locations, or airports to diagnose individuals infected with SARS-CoV-2. We believe the current methodology that we have implemented in this article is beneficial for the early screening of infectious diseases, in which fast screening with high accuracy is necessary.


Subject(s)
COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Testing/instrumentation , COVID-19 Testing/methods , Humans , Limit of Detection , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/metabolism , SARS-CoV-2/isolation & purification
12.
Front Bioeng Biotechnol ; 9: 718718, 2021.
Article in English | MEDLINE | ID: mdl-34589472

ABSTRACT

Electrospinning is a promising method to fabricate bioengineered scaffolds, thanks to utilizing various types of biopolymers, flexible structures, and also the diversity of output properties. Mechanical properties are one of the major components of scaffold design to fabricate an efficacious artificial substitute for the natural extracellular matrix. Additionally, fiber orientations, as one of the scaffold structural parameters, could play a crucial role in the application of fabricated fibrous scaffolds. In this study, gelatin was used as a highly biocompatible polymer in blend with cellulose acetate (CA), a polysaccharide, to enhance the achievable range of mechanical characteristics to fabricated fibrous electrospun scaffolds. By altering input variables, such as polymers concentration, weight ratio, and mandrel rotation speed, scaffolds with various mechanical and morphological properties could be achieved. As expected, the electrospun scaffold with a higher mandrel rotation speed shows higher fiber alignment. A wide range of mechanical properties were gained through different values of polymer ratio and total concentration. A general improvement in mechanical strength was observed by increasing the concentration and CA content in the solution, but contradictory effects, such as high viscosity in more concentrated solutions, influenced the mechanical characteristics as well. A response surface method was applied on experimental results in order to describe a continuous variation of Young's modulus, yield stress, and strain at rupture. A full quadratic version of equations with the 95% confidence level was applied for the response modeling. This model would be an aid for engineers to adjust mandrel rotation speed, solution concentration, and gelatin/CA ratio to achieve desired mechanical and structural properties.

13.
Int J Clin Pract ; 75(11): e14675, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34322971

ABSTRACT

BACKGROUND: Evidence recommends that vitamin D might be a crucial supportive agent for the immune system, mainly in cytokine response regulation against COVID-19. Hence, we carried out a systematic review and meta-analysis in order to maximise the use of everything that exists about the role of vitamin D in the COVID-19. METHODS: A systematic search was performed in PubMed, Scopus, Embase and Web of Science up to December 18, 2020. Studies focused on the role of vitamin D in confirmed COVID-19 patients were entered into the systematic review. RESULTS: Twenty-three studies containing 11 901 participants entered into the meta-analysis. The meta-analysis indicated that 41% of COVID-19 patients were suffering from vitamin D deficiency (95% CI, 29%-55%), and in 42% of patients, levels of vitamin D were insufficient (95% CI, 24%-63%). The serum 25-hydroxyvitamin D concentration was 20.3 ng/mL among all COVID-19 patients (95% CI, 12.1-19.8). The odds of getting infected with SARS-CoV-2 are 3.3 times higher among individuals with vitamin D deficiency (95% CI, 2.5-4.3). The chance of developing severe COVID-19 is about five times higher in patients with vitamin D deficiency (OR: 5.1, 95% CI, 2.6-10.3). There is no significant association between vitamin D status and higher mortality rates (OR: 1.6, 95% CI, 0.5-4.4). CONCLUSION: This study found that most of the COVID-19 patients were suffering from vitamin D deficiency/insufficiency. Also, there is about three times higher chance of getting infected with SARS-CoV-2 among vitamin-D-deficient individuals and about five times higher probability of developing the severe disease in vitamin-D-deficient patients. Vitamin D deficiency showed no significant association with mortality rates in this population.


Subject(s)
COVID-19 , Vitamin D Deficiency , Humans , SARS-CoV-2 , Vitamin D , Vitamin D Deficiency/epidemiology , Vitamins
14.
Biofabrication ; 13(3)2021 04 08.
Article in English | MEDLINE | ID: mdl-33561837

ABSTRACT

Obstructive sleep apnea (OSA) is a chronic disorder that involves a decrease or complete cessation of airflow during sleep. It occurs when the muscles supporting the soft tissues in the throat relax during sleep, causing narrowing or closure of the upper airway. Sleep apnea is a serious medical condition with an increased risk of cardiovascular complications and impaired quality of life. Continuous positive airway pressure (CPAP) is the most effective treatment for moderate to severe cases of OSA and is effective in mild sleep apnea. However, CPAP therapy is associated with the development of several nasal side effects and is inconvenient for the user, leading to low compliance rates. The effects of CPAP treatment on the upper respiratory system, as well as the pathogenesis of side effects, are incompletely understood and not adequately researched. To better understand the effects of CPAP treatment on the upper respiratory system, we developed anin vitro3D-printed microfluidic platform. A nasal epithelial cell line, RPMI 2650, was then exposed to certain conditions to mimic thein vivoenvironment. To create these conditions, the microfluidic device was utilized to expose nasal epithelial cells grown and differentiated at the air-liquid interface. The airflow was similar to what is experienced with CPAP, with pressure ranging between 0 and 20 cm of H2O. Cells exposed to pressure showed decreased barrier integrity, change in cellular shape, and increased cell death (lactate dehydrogenase release into media) compared to unstressed cells. Stressed cells also showed increased secretions of inflammatory markers IL-6 and IL-8 and had increased production of ATP. Our results suggest that stress induced by airflow leads to structural, metabolic, and inflammatory changes in the nasal epithelium, which may be responsible for developing nasal side-effects following CPAP treatment.


Subject(s)
Continuous Positive Airway Pressure , Quality of Life , Microfluidics , Nasal Mucosa , Printing, Three-Dimensional
15.
Adv Mater ; 33(13): e2005363, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33594744

ABSTRACT

Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.


Subject(s)
Drug Delivery Systems/methods , Intracellular Space/metabolism , Animals , Humans , Nanotechnology
16.
Biosensors (Basel) ; 12(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35049648

ABSTRACT

Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue engineering applications, and remove challenges in cell encapsulation and three-dimensional (3D) culture methods. The fabrication of droplets using microfluidics also provides controllable microenvironments for manipulating gametes, fertilization, and embryo cultures for reproductive medicine. This review focuses on the relevant studies, and the latest progress in applying droplets in stem cell therapy, tissue engineering, reproductive biology, and gene therapy are separately evaluated. In the end, we discuss the challenges ahead in the field of microfluidics-based droplets for advanced regenerative medicine.


Subject(s)
Microfluidics , Regenerative Medicine , Biocompatible Materials , Microfluidics/methods , Tissue Engineering
17.
Diagnostics (Basel) ; 11(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374612

ABSTRACT

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated serious respiratory disease, coronavirus disease 2019 (COVID-19), poses a major threat to global public health. Owing to the lack of vaccine and effective treatments, many countries have been overwhelmed with an exponential spread of the virus and surge in the number of confirmed COVID-19 cases. Current standard diagnostic methods are inadequate for widespread testing as they suffer from prolonged turn-around times (>12 h) and mostly rely on high-biosafety-level laboratories and well-trained technicians. Point-of-care (POC) tests have the potential to vastly improve healthcare in several ways, ranging from enabling earlier detection and easier monitoring of disease to reaching remote populations. In recent years, the field of POC diagnostics has improved markedly with the advent of micro- and nanotechnologies. Due to the COVID-19 pandemic, POC technologies have been rapidly innovated to address key limitations faced in existing standard diagnostic methods. This review summarizes and compares the latest available POC immunoassay, nucleic acid-based and clustered regularly interspaced short palindromic repeats- (CRISPR)-mediated tests for SARS-CoV-2 detection that we anticipate aiding healthcare facilities to control virus infection and prevent subsequent spread.

18.
Expert Rev Mol Diagn ; 20(11): 1139-1147, 2020 11.
Article in English | MEDLINE | ID: mdl-33140979

ABSTRACT

Introduction: Metastasis results in more than 90% of cancer-related deaths globally. The process is thought to be facilitated by metastatic precursor cells, commonly termed circulating tumor cells (CTCs). CTCs can exist as single cells or cell clusters and travel through the lymphovasculature to distant organs where they can form overt metastasis. Areas covered: Studies have highlighted that CTC clusters, which may be homotypic or heterotypic in composition, have a higher metastatic potential compared to single CTCs. The characterization of CTC clusters is becoming important as heterotypic clusters can provide a mechanism for immune evasion. This review summarizes the latest advances in CTC cluster-mediated metastasis and clinical significance. Expert opinion: Comprehensive characterization of CTC clusters is needed to understand the cell types and interactions within clusters, in order to identify ways in which to reduce CTC cluster-mediated metastasis. The role of CTC clusters in prognosticating disease progression needs to be determined by documenting CTC clusters from the time of diagnosis over the course of therapy.


Subject(s)
Neoplasms/diagnosis , Neoplastic Cells, Circulating/pathology , Clinical Decision-Making , Disease Management , Disease Progression , Humans , Neoplasm Metastasis , Neoplasms/therapy , Prognosis
19.
BMC Cancer ; 20(1): 1049, 2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33129287

ABSTRACT

BACKGROUND: Measurement of serum human epidermal growth factor receptor-2 (HER-2/neu) levels might play an essential role as a diagnostic/screening marker for the early selection of therapeutic approaches and predict prognosis in breast cancer patients. We aimed to undertake a systematic review and meta-analysis focusing on the diagnostic/screening value of serum HER-2 levels in comparison to routine methods. METHODS: We performed a systematic search via PubMed, Scopus, Cochrane-Library, and Web of Science databases for human diagnostic studies reporting the levels of serum HER-2 in breast cancer patients, which was confirmed using the histopathological examination. Meta-analyses were carried out for sensitivity, specificity, accuracy, area under the ROC curve (AUC), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR). RESULTS: Fourteen studies entered into this investigation. The meta-analysis indicated the low sensitivity for serum HER2 levels (Sensitivity: 53.05, 95%CI 40.82-65.28), but reasonable specificity of 79.27 (95%CI 73.02-85.51), accuracy of 72.06 (95%CI 67.04-77.08) and AUC of 0.79 (95%CI 0.66-0.92). We also found a significant differences for PPV (PPV: 56.18, 95%CI 44.16-68.20), NPV (NPV: 76.93, 95%CI 69.56-84.31), PLR (PLR: 2.10, 95%CI 1.69-2.50) and NLR (NLR: 0.58, 95%CI 0.44-0.71). CONCLUSION: Our findings revealed that although serum HER-2 levels showed low se nsitivity for breast cancer diagnosis, its specificity, accuracy and AUC were reasonable. Hence, it seems that the measurement of serum HER-2 levels can play a significant role as a verification test for initial negative screening test results, especially in low-income regions due to its cost-effectiveness and ease of implementation.


Subject(s)
Biomarkers, Tumor/blood , Breast Neoplasms/diagnosis , Receptor, ErbB-2/blood , Breast Neoplasms/blood , Female , Humans , Prognosis
20.
Micromachines (Basel) ; 11(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331275

ABSTRACT

High throughput particle/cell concentration is crucial for a wide variety of biomedical, clinical, and environmental applications. In this work, we have proposed a passive spiral microfluidic concentrator with a complex cross-sectional shape, i.e., a combination of rectangle and trapezoid, for high separation efficiency and a confinement ratio less than 0.07. Particle focusing in our microfluidic system was observed in a single, tight focusing line, in which higher particle concentration is possible, as compared with simple rectangular or trapezoidal cross-sections with similar flow area. The sharper focusing stems from the confinement of Dean vortices in the trapezoidal region of the complex cross-section. To quantify this effect, we introduce a new parameter, complex focusing number or CFN, which is indicative of the enhancement of inertial focusing of particles in these channels. Three spiral microchannels with various widths of 400 µm, 500 µm, and 600 µm, with the corresponding CFNs of 4.3, 4.5, and 6, respectively, were used. The device with the total width of 600 µm was shown to have a separation efficiency of ~98%, and by recirculating, the output concentration of the sample was 500 times higher than the initial input. Finally, the investigation of results showed that the magnitude of CFN relies entirely on the microchannel geometry, and it is independent of the overall width of the channel cross-section. We envision that this concept of particle focusing through complex cross-sections will prove useful in paving the way towards more efficient inertial microfluidic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...